Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612739

RESUMO

In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Corpos de Lewy , Corpo Estriado , Progressão da Doença
2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542133

RESUMO

The present investigation was designed based on the evidence that, in neurodegenerative disorders, such as Alzheimer's dementia (AD) and Parkinson's disease (PD), damage to the locus coeruleus (LC) arising norepinephrine (NE) axons (LC-NE) is documented and hypothesized to foster the onset and progression of neurodegeneration within target regions. Specifically, the present experiments were designed to assess whether selective damage to LC-NE axons may alter key proteins involved in neurodegeneration within specific limbic regions, such as the hippocampus and piriform cortex, compared with the dorsal striatum. To achieve this, a loss of LC-NE axons was induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) in C57 Black mice, as assessed by a loss of NE and dopamine-beta-hydroxylase within target regions. In these experimental conditions, the amount of alpha-synuclein (alpha-syn) protein levels were increased along with alpha-syn expressing neurons within the hippocampus and piriform cortex. Similar findings were obtained concerning phospho-Tau immunoblotting. In contrast, a decrease in inducible HSP70-expressing neurons and a loss of sequestosome (p62)-expressing cells, along with a loss of these proteins at immunoblotting, were reported. The present data provide further evidence to understand why a loss of LC-NE axons may foster limbic neurodegeneration in AD and limbic engagement during PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Camundongos , Animais , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Neurônios/metabolismo , Neurotoxinas/farmacologia , Axônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo
3.
Psychophysiology ; : e14550, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433453

RESUMO

Motivationally significant events like oddball stimuli elicit both a characteristic event-related potential (ERPs) known as P300 and a set of autonomic responses including a phasic pupil dilation. Although co-occurring, P300 and pupil-dilation responses to oddball events have been repeatedly found to be uncorrelated, suggesting separate origins. We re-examined their relationship in the context of a three-stimulus version of the auditory oddball task, independently manipulating the frequency (rare vs. repeated) and motivational significance (relevance for the participant's task) of the stimuli. We used independent component analysis to derive a P300b component from EEG traces and linear modeling to separate a stimulus-related pupil-dilation response from a potentially confounding action-related response. These steps revealed that, once the complexity of ERP and pupil-dilation responses to oddball targets is accounted for, the amplitude of phasic pupil dilations and P300b are tightly and positively correlated (across participants: r = .69 p = .002), supporting their coordinated generation.

4.
J Neural Transm (Vienna) ; 131(4): 335-358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367081

RESUMO

Methamphetamine (METH) produces a cytopathology, which is rather specific within catecholamine neurons both in vitro and ex vivo, in animal models and chronic METH abusers. This led some authors to postulate a sort of parallelism between METH cytopathology and cell damage in Parkinson's disease (PD). In fact, METH increases and aggregates alpha-syn proto-fibrils along with producing spreading of alpha-syn. Although alpha-syn is considered to be the major component of aggregates and inclusions developing within diseased catecholamine neurons including classic Lewy body (LB), at present, no study provided a quantitative assessment of this protein in situ, neither following METH nor in LB occurring in PD. Similarly, no study addressed the quantitative comparison between occurrence of alpha-syn and other key proteins and no investigation measured the protein compared with non-protein structure within catecholamine cytopathology. Therefore, the present study addresses these issues using an oversimplified model consisting of a catecholamine cell line where the novel approach of combined light and electron microscopy (CLEM) was used measuring the amount of alpha-syn, which is lower compared with p62 or poly-ubiquitin within pathological cell domains. The scenario provided by electron microscopy reveals unexpected findings, which are similar to those recently described in the pathology of PD featuring packing of autophagosome-like vesicles and key proteins shuttling autophagy substrates. Remarkably, small seed-like areas, densely packed with p62 molecules attached to poly-ubiquitin within wide vesicular domains occurred. The present data shed new light about quantitative morphometry of catecholamine cell damage in PD and within the addicted brain.


Assuntos
Metanfetamina , Doença de Parkinson , Animais , Metanfetamina/farmacologia , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Microscopia Eletrônica , Catecolaminas , Ubiquitinas
5.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068993

RESUMO

Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.


Assuntos
Zumbido , Humanos , Células Ciliadas Auditivas Externas , Estereocílios , Som , Estimulação Acústica
6.
Biomedicines ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137410

RESUMO

Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.

7.
Front Neurol ; 14: 1296924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145127

RESUMO

Introduction: Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4 patients to highlight the occurrence of splicing mutations and combine functional studies to assess the relevance of these variants in the molecular mechanisms of the disease. Methods: We performed an NGS panel in 105 patients, in silico analysis for splicing mutations, and in vitro minigene assay. Results and discussion: The NGS panel was applied to screen 105 patients carrying a clinical phenotype corresponding to upper motor neuron syndrome (UMNS), selectively affecting motor control of lower limbs. Pathogenic mutations in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4 splicing variants. Then, we focused on the patients carrying splicing variants using a combined approach of in silico and in vitro analysis through minigene assay and RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T), functional assays confirm the types of molecular alterations suggested by the in silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-1delG differed from what was predicted (skipping exon 7), and the functional study indicates the loss of frame and formation of a premature stop codon. The present study evidenced the high splice variants in SPG4 patients and indicated the relevance of functional assays added to in silico analysis to decipher the pathogenic mechanism.

8.
Diagnostics (Basel) ; 13(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892024

RESUMO

A systematic and narrative literature review was performed, focusing attention on the anatomy of the area located at the junction of the sphenoid and the basal portion of the temporal bone (petrous bone, petrous apex, upper petro-clival region) encircled by the free edge of the tentorium, the insertion of the tentorium itself to the petrous apex and the anterior and posterior clinoid processes that give rise to three distinct dural folds or ligaments: the anterior petroclinoid ligament, the posterior petroclinoid ligament and the interclinoid ligament. These dural folds constitute the posterior portion of the roof of the cavernous sinus denominated "the oculomotor triangle". The main purpose of this review study was to describe this anatomical region, particularly in the light of the relationships between the anterior margin of the free edge of the tentorium and the above-mentioned components of the sphenoid and petrous bone.

9.
J Alzheimers Dis ; 96(1): 77-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742639

RESUMO

BACKGROUND: The effects of Alzheimer's disease (AD) pathology on the experience of pain are poorly understood. OBJECTIVE: To understand the pathophysiological mechanisms underlying pain sensory transmission in the transgenic mouse model of AD, CRND8. METHODS: We explored AD-related pathology in the spinal cord and dorsal root ganglia of 18-week-old female CRND8 mice. We assessed nociceptive responses to both acute heat stimuli and persistent inflammatory pain in CRND8 mice and non-transgenic (non-Tg) littermates. In addition, we searched for differences in biochemical correlates of inflammatory pain between CRND8 and non-Tg mice. Finally, we investigated the excitability of dorsal horn noc iceptive neurons in spinal cord slices from CRND8 and non-Tg mice. RESULTS: We demonstrated the presence of intracellular AD-like pathology in the spinal cord and in the dorsal root ganglia nociceptive sensory neurons of CRND8 mice. We found that CRND8 mice had a reduced susceptibility to acute noxious heat stimuli and an increased sensitivity to tonic inflammatory pain. Tonic inflammatory pain correlated with a lack of induction of pro-opiomelanocortin in the spinal cord of CRND8 mice as compared to non-Tg mice. Electrophysiological recording in acute spinal cord slice preparations indicated an increased probability of glutamate release at the membrane of dorsal horn nociceptive neurons in CRND8 mice. CONCLUSION: This study suggests that an increased thermal tolerance and a facilitation of nociception by peripheral inflammation can coexist in AD.


Assuntos
Doença de Alzheimer , Hiperalgesia , Camundongos , Feminino , Animais , Doença de Alzheimer/complicações , Temperatura Alta , Dor/etiologia , Camundongos Transgênicos
10.
Curr Alzheimer Res ; 20(4): 277-288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37488756

RESUMO

BACKGROUND: The integrity of Locus Coeruleus can be evaluated in vivo using specific Magnetic Resonance Imaging sequences. While this nucleus has been shown to be degenerated both in post-mortem and in vivo studies in Alzheimer's Disease, for other neurodegenerative dementias such as Dementia with Lewy Bodies this has only been shown ex-vivo. OBJECTIVE: To evaluate the integrity of the Locus Coeruleus through Magnetic Resonance Imaging in patients suffering from Dementia with Lewy Bodies and explore the possible differences with the Locus Coeruleus alterations occurring in Alzheimer's Dementia. METHODS: Eleven patients with Dementia with Lewy Bodies and 35 with Alzheimer's Dementia were recruited and underwent Locus Coeruleus Magnetic Resonance Imaging, along with 52 cognitively intact, age-matched controls. Images were analyzed applying an already developed template-based approach; Locus Coeruleus signal was expressed through the Locus Coeruleus Contrast Ratio parameter, and a locoregional analysis was performed. RESULTS: Both groups of patients showed significantly lower values of Locus Coeruleus Contrast Ratio when compared to controls. A different pattern of spatial involvement was found; patients affected by Dementia with Lewy bodies showed global and bilateral involvement of the Locus Coeruleus, whereas the alterations in Alzheimer's Dementia patients were more likely to be localized in the rostral part of the left nucleus. CONCLUSIONS: Magnetic Resonance Imaging successfully detects widespread Locus Coeruleus degeneration in patients suffering from Dementia with Lewy Bodies. Further studies, in larger cohorts and in earlier stages of the disease, are needed to better disclose the potential diagnostic and prognostic role of this neuroradiological tool.

11.
Curr Neuropharmacol ; 21(11): 2227-2232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409546

RESUMO

Defective autophagy in the retinal pigment epithelium (RPE) is involved in retinal degeneration, mostly in the course of age-related macular degeneration (AMD), which is an increasingly prevalent retinal disorder, eventually leading to blindness. However, most autophagy activators own serious adverse effects when administered systemically. Curcumin is a phytochemical, which induces autophagy with a wide dose-response curve, which brings minimal side effects. Recent studies indicating defective autophagy in AMD were analyzed. Accordingly, in this perspective, we discuss and provide some evidence about the protective effects of curcumin in preventing RPE cell damage induced by the autophagy inhibitor 3-methyladenine (3-MA). Cells from human RPE were administered the autophagy inhibitor 3-MA. The cell damage induced by 3-MA was assessed at light microscopy by hematoxylin & eosin, Fluoro Jade-B, and ZO1 immunohistochemistry along with electron microscopy. The autophagy inhibitor 3-MA produces cell loss and cell degeneration of RPE cells. These effects are counteracted dose-dependently by curcumin. In line with the hypothesis that the autophagy machinery is key in sustaining the integrity of the RPE, here we provide evidence that the powerful autophagy inhibitor 3-MA produces dose-dependently cell loss and cell degeneration in cultured RPE cells, while inhibiting autophagy as shown by LC3-II/LC3-I ratio and gold-standard assessment of autophagy through LC3-positive autophagy vacuoles. These effects are prevented dose-dependently by curcumin, which activates autophagy. These data shed the perspective of validating the role of phytochemicals as safe autophagy activators to treat AMD.


Assuntos
Curcumina , Degeneração Macular , Degeneração Retiniana , Humanos , Epitélio Pigmentado da Retina/metabolismo , Degeneração Retiniana/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Autofagia/fisiologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Estresse Oxidativo
12.
Antioxidants (Basel) ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37371913

RESUMO

The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.

13.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37144413

RESUMO

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Animais , Camundongos , Ratos , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/genética , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Vasodilatação
14.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240326

RESUMO

The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.


Assuntos
Células Endoteliais , Degeneração Macular , Humanos , Células Endoteliais/metabolismo , Corioide/metabolismo , Retina/metabolismo , Lâmina Basilar da Corioide/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Autofagia
15.
J Clin Med ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37240478

RESUMO

Background: Brain metastases (BMs) is one of the most frequent metastatic sites for non-small-cell lung cancer (NSCLC). It is a matter of debate whether EGFR mutation in the primary tumor may be a marker for the disease course, prognosis, and diagnostic imaging of BMs, comparable to that described for primary brain tumors, such as glioblastoma (GB). This issue was investigated in the present research manuscript. Methods: We performed a retrospective study to identify the relevance of EGFR mutations and prognostic factors for diagnostic imaging, survival, and disease course within a cohort of patients affected by NSCLC-BMs. Imaging was carried out using MRI at various time intervals. The disease course was assessed using a neurological exam carried out at three-month intervals. The survival was expressed from surgical intervention. Results: The patient cohort consisted of 81 patients. The overall survival of the cohort was 15 ± 1.7 months. EGFR mutation and ALK expression did not differ significantly for age, gender, and gross morphology of the BM. Contrariwise, the EGFR mutation was significantly associated with MRI concerning the occurrence of greater tumor (22.38 ± 21.35 cm3 versus 7.68 ± 6.44 cm3, p = 0.046) and edema volume (72.44 ± 60.71 cm3 versus 31.92 cm3, p = 0.028). In turn, the occurrence of MRI abnormalities was related to neurological symptoms assessed using the Karnofsky performance status and mostly depended on tumor-related edema (p = 0.048). However, the highest significant correlation was observed between EGFR mutation and the occurrence of seizures as the clinical onset of the neoplasm (p = 0.004). Conclusions: The presence of EGFR mutations significantly correlates with greater edema and mostly a higher seizure incidence of BMs from NSCLC. In contrast, EGFR mutations do not affect the patient's survival, the disease course, and focal neurological symptoms but seizures. This contrasts with the significance of EGFR in the course and prognosis of the primary tumor (NSCLC).

16.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983032

RESUMO

Huntington's disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as one of the major determinants. High levels of sphingolipids have been found to localize in the myelin sheaths of oligodendrocytes, where they play an important role in myelination stability and functions. In this study, we investigated any potential existing link between sphingolipid modulation and myelin structure by performing both ultrastructural and biochemical analyses. Our findings demonstrated that the treatment with the glycosphingolipid modulator THI preserved myelin thickness and the overall structure and reduced both area and diameter of pathologically giant axons in the striatum of HD mice. These ultrastructural findings were associated with restoration of different myelin marker protein, such as myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and 2', 3' Cyclic Nucleotide 3'-Phosphodiesterase (CNP). Interestingly, the compound modulated the expression of glycosphingolipid biosynthetic enzymes and increased levels of GM1, whose elevation has been extensively reported to be associated with reduced toxicity of mutant Htt in different HD pre-clinical models. Our study further supports the evidence that the metabolism of glycosphingolipids may represent an effective therapeutic target for the disease.


Assuntos
Doença de Huntington , Bainha de Mielina , Camundongos , Animais , Bainha de Mielina/metabolismo , Glicoesfingolipídeos/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Modelos Animais de Doenças , Camundongos Transgênicos
17.
Neurosci Biobehav Rev ; 148: 105148, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996994

RESUMO

Here an overview is provided on therapeutic/neuroprotective effects of Lithifum (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.


Assuntos
Doenças Neurodegenerativas , Neuroproteção , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Autofagia , Plasticidade Neuronal
18.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672156

RESUMO

Cells from glioblastoma multiforme (GBM) feature up-regulation of the mechanistic Target of Rapamycin (mTOR), which brings deleterious effects on malignancy and disease course. At the cellular level, up-regulation of mTOR affects a number of downstream pathways and suppresses autophagy, which is relevant for the neurobiology of GBM. In fact, autophagy acts on several targets, such as protein clearance and mitochondrial status, which are key in promoting the malignancy GBM. A defective protein clearance extends to cellular prion protein (PrPc). Recent evidence indicates that PrPc promotes stemness and alters mitochondrial turnover. Therefore, the present study measures whether in GBM cells abnormal amount of PrPc and mitochondrial alterations are concomitant in baseline conditions and whether they are reverted by mTOR inhibition. Proteins related to mitochondrial turnover were concomitantly assessed. High amounts of PrPc and altered mitochondria were both mitigated dose-dependently by the mTOR inhibitor rapamycin, which produced a persistent activation of the autophagy flux and shifted proliferating cells from S to G1 cell cycle phase. Similarly, mTOR suppression produces a long-lasting increase of proteins promoting mitochondrial turnover, including Pink1/Parkin. These findings provide novel evidence about the role of autophagy in the neurobiology of GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Proteínas Priônicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Mitocôndrias/metabolismo
19.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674920

RESUMO

The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.


Assuntos
Glioma , Proteínas PrPC , Príons , Humanos , Proteínas Priônicas , Príons/metabolismo , Glioma/genética , Autofagia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas PrPC/metabolismo , Microambiente Tumoral
20.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36116006

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Assuntos
Doença de Huntington , Camundongos , Humanos , Animais , Doença de Huntington/tratamento farmacológico , Modelos Teóricos , Imidazóis/farmacologia , Glicoesfingolipídeos , Modelos Animais de Doenças , Proteína Huntingtina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...